Ядерный ракетный двигатель принцип работы

Ядерная энергетическая установка для ракет и подводных аппаратов – как это работает
Мы, без всякого преувеличения, стали свидетелями эпохального события, открывающего новые, совершенно фантастические перспективы для военной техники и (в перспективе) — энергетики и транспорта вообще.
Но для начала хотелось бы понять, как работает ядерная энергетическая установка для ракет и подводных аппаратов, о к

Историческая летопись

Использование ядерной энергетики в космосе перестало быть фантастикой еще в 70-х годах прошедшего столетия. Первые ядерные двигатели в 1970-1988 запускались в космос и успешно эксплуатировались на космических аппаратах (КА) наблюдения «УС-А». В них применялась система с термоэлектрической ядерно-энергетической установкой (ЯЭУ) «Бук» электрической мощностью 3 кВт.

В 1987-1988 два аппарата «Плазма-А» с термоэмиссионной ЯЭУ «Топаз» мощностью 5 кВт прошли летно-космические испытания, во время которых впервые было осуществлено питание электроракетных двигателей (ЭРД) от ядерного источника энергии.

Выполнен комплекс наземных ядерно-энергетических испытаний термоэмиссионной ядерной установкой «Енисей» мощностью 5 кВт. На основе этих технологий разработаны проекты термоэмиссионных ЯЭУ мощностью 25-100 кВт.

ядерный космический двигатель

Ядерная энергетическая установка для ракет и подводных аппаратов – как это работает

Мы, без всякого преувеличения, стали свидетелями эпохального события, открывающего новые, совершенно фантастические перспективы для военной техники и (в перспективе) — энергетики и транспорта вообще.

Но для начала хотелось бы понять, как работает ядерная энергетическая установка для ракет и подводных аппаратов, о которой говорил Путин. Что именно в ней является движителем? Откуда берётся тяга? Не за счёт же вылетающих из сопла нейтронов…

Когда узнал со слов коллеги о том, что у нас созданы ракеты с практически неограниченной дальностью полёта, обалдел. Показалось, он что-то упустил, а слово “неограниченной” было упомянуто в каком-то узком смысле.

Но информация, полученная затем из первоисточника, сомнений не вызывала. Звучала, напомню, она так:

Одно из них – создание малогабаритной сверхмощной ядерной энергетической установки, которая размещается в корпусе крылатой ракеты типа нашей новейшей ракеты Х-101 воздушного базирования или американского «Томагавка», но при этом обеспечивает в десятки раз – в десятки раз! – большую дальность полёта, которая является практически неограниченной.

В услышанное невозможно было поверить, но не верить было нельзя — это сказал ОН. Включил мозг и тут же получил ответ. Да какой!

Ну, черти! Ну, гении! Нормальному человеку такое даже в голову не придёт!

Итак, до сих пор мы знали только о ядерных силовых установках для космических ракет. В космических ракетах обязательно есть вещество, которое, будучи разогретым или разогнанным ускорителем, питаемым ядерной силовой установкой, с силой выбрасывается из сопла ракеты и обеспечивает ей тягу.

Вещество при этом расходуется и время работы двигателя ограничено.

Такие ракеты уже были и ещё будут. А вот за счёт чего движется ракета нового типа, если её дальность является “практически неограниченной”?

Ядерная энергетическая установка для ракет

Чисто теоретически, кроме тяги на веществе, имеющемся в запасе на ракете, движение ракеты возможно за счёт тяги электрических двигателей с “пропеллерами” (винтовой двигатель). Электричество при этом производит генератор, питающийся от ядерной силовой установки.

Но такую массу без большого крыла на винтовой тяге, да ещё с винтами небольшого диаметра, в воздухе не удержать — слишком мала такая тяга. А это таки ракета, а не беспилотник.

Итого, остаётся самый неожиданный и, как оказалось, самый эффективный способ обеспечения ракеты веществом для тяги — взятие его из окружающего пространства.

Т.е., как бы это удивительно ни звучало, но новая ракета работает “на воздухе”!

В том смысле, что из её сопла вырывается именно разогретый воздух и более ничего! А воздух не закончится, пока ракета находится в атмосфере. Именно поэтому эта ракета — крылатая, т.е. её полёт проходит целиком в атмосфере.

Классические технологии ракет большой дальности старались сделать полёт ракеты выше, чтобы уменьшить трение о воздух и тем самым увеличить их дальность. Мы как всегда сломали шаблон и сделали ракету не просто большой, а неограниченной дальности именно в воздушной среде.

Неограниченная дальность полёта даёт возможность таким ракетам работать в режиме ожидания. Запущенная ракета прибывает в район патрулирования и нарезает там круги, ожидая доразведки данных о цели или прибытия цели в данный район. После чего неожиданно для цели немедленно её атакует.

За горизонтом гениальности. Как работает ядерный двигатель на российских ракетах и подводных дронах

Ядерная энергетическая установка для подводных аппаратов

Думаю, аналогично устроена и ядерная энергетическая установка для подводных аппаратов о которых говорил Путин. С той поправкой, что вместо воздуха используется вода.

Дополнительно об этом говорит то, что эти подводные аппараты обладают низкой шумностью. Известная торпеда “Шквал”, разработанная ещё в советское время, имела скорость порядка 300 км/час, но была очень шумной. По сути это была ракета, летящая в воздушном пузыре.

За малошумностью же стоит новый принцип движения. И он — тот же самый, что и в ракете, потому что универсален. Была бы только окружающая среда минимально необходимой плотности.

Этому аппарату неплохо подошло бы название “Кальмар”, потому что по сути это водомётный двигатель в “ядерном исполнении” 🙂

Что касается скорости, она кратно превосходит скорость самых быстрых надводных кораблей. Самые быстрые корабли (именно корабли, а не катера) имеют скорость до 100-120 км/час. Следовательно, с минимальным коэффициентом 2 получаем скорость 200-250 км/час. Под водой. И не очень шумно. И с дальностью в многие тысячи километров… Страшный сон наших недругов.

Относительно ограниченная по сравнению с ракетой дальность — временное явление и объясняется тем, что морская вода высокой температуры — очень агрессивная среда и материалы камеры, условно говоря, сгорания, имеют ограниченный ресурс. Со временем же дальность этих аппаратов может быть увеличена в разы только за счёт создания новых, более устойчивых материалов.

Ядерная энергетическая установка

Несколько слов о самой ядерной энергетической установке.

1. Поражает воображение фраза Путина:

При объёме в сто раз меньше, чем у установок современных атомных подводных лодок, имеет большую мощность и в 200 раз меньшее время выхода на боевой режим, то есть на максимальную мощность.

Опять одни вопросы.

Как они этого добились? Какие конструкторские решения и технологии применены?

Мысли такие.

1. Радикальное, на два порядка, увеличение отдачи мощности на единицу массы возможно только при условии приближения режима работы ядерного реактора к взрывному. При этом реактор надёжно управляется.

2. Поскольку околовзрывной режим работы обеспечивается надёжно, скорее всего, это реактор на быстрых нейтронах. На мой взгляд, только на них возможно безопасное использование столь критического режима работы. Кстати, для них топлива на Земле — на столетия.

3. Если же со временем мы узнаем, что это таки реактор на медленных нейтронах, я тем более снимаю шляпу перед нашими ядерщиками, потому что без официального заявления в это совершенно невозможно поверить.

В любом случае, смелость и изобретательность наших ядерщиков поразительна и достойна самых громких слов восхищения! Особенно приятно, что наши ребята умеют работать в тиши. А потом как грохнут новостью по голове — хоть стой, хоть падай! 🙂

Как это работает

Примерная, смысловая, схема работы двигателя ракеты на основе ядерной силовой установки выглядит так.

1. Открывается, условно говоря, впускной клапан. Набегающий воздушный поток попадает через него в камеру нагрева, которая постоянно разогрета от работы реактора.

2. Впускной клапан закрывается.

3. Воздух в камере нагревается.

4. Открывается выпускной клапан и воздух с большой скоростью вырывается из сопла ракеты.

5. Выпускной клапан закрывается.

Цикл повторяется с высокой частотой. Отсюда эффект непрерывной работы.

Безопасность

Использование открытия российских учёных в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Не в смысле её возможного взрыва — думаю, этот вопрос решён, — а в смысле безопасности его выхлопа.

Защита малогабаритного ядерного двигателя явно меньше, чем у большого по размерам, поэтому нейтроны наверняка будут проникать в “камеру сгорания”, а точнее, камеру разогрева воздуха, тем самым с некоторой вероятностью делая радиоактивным всё, что таковым можно в воздухе сделать.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей и так, так что свалить все на ядерные двигатели не получится. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина ещё на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Более точная информация появится, когда дело подойдёт к гражданскому применению этих двигателей.

Перспективы

Честно говоря, от перспектив захватывает дух. Причём я уже говорю не о военных технологиях, здесь всё ясно, а о применении новых технологий в гражданском секторе.

Где могут быть применены ядерные силовые установки? Пока навскидку, чисто теоретически, в перспективе 20-30 лет.

1. Флот, в том числе гражданский, транспортный. Многое придётся переводить на подводные крылья. Зато скорость можно легко увеличить вдвое/втрое, а стоимость эксплуатации с годами будет только падать.

2. Авиация, прежде всего транспортная. Хотя, если безопасность с точки зрения опасности облучения окажется минимальной, возможно применение и для гражданских перевозок.

3. Авиация с вертикальным взлётом и посадкой. С использованием резервуаров со сжатым воздухом, пополняемых во время полёта. Иначе, на малых скоростях, необходимую тягу не обеспечить.

4. Локомотивы скоростных электропоездов. С использованием промежуточного электрогенератора.

5. Грузовые автомобили на электротяге. Тоже, разумеется, с использованием промежуточного электрогенератора. Это, думаю, будет в отдалённой перспективе, когда силовые установки удастся уменьшить ещё в несколько раз. Но исключать такой возможности я бы не стал.

Друзья, обозначена новая эра в сфере энергетики и транспорта. Судя по всему, Россия станет лидером этих направлений на ближайшие десятилетия.

Примите мои поздравления.

Скучно не будет!

Конструктивные особенности

В основе любого ядерного космического двигателя лежит реактор, состоящий из активной зоны и бериллиевого отражателя, размещенных в силовом корпусе. В активной зоне и происходит деление атомов горючего вещества, как правило, урана U238, обогащенного изотопами U235. Для придания процессу распада ядер определенных свойств, здесь же расположены и замедлители – тугоплавкие вольфрам или молибден. В случае если замедлитель включают в состав ТВЭЛов, реактор называют гомогенным, а если размещают отдельно – гетерогенным. В состав ядерного двигателя также входят блок подачи рабочего тела, органы управления, теневая радиационная защита, сопло. Конструктивные элементы и узлы реактора, испытывающие высокие термические нагрузки, охлаждаются рабочим телом, которое затем турбонасосным агрегатом нагнетается в тепловыделяющие сборки. Здесь происходит его нагрев почти до 3 000˚С. Истекая через сопло, рабочее тело создает реактивную тягу.

Ядерный двигатель для космоса

Типичными органами управления реактором служат регулирующие стержни и поворотные барабаны, выполненные из вещества, поглощающего нейтроны (бора или кадмия). Стержни размещают непосредственно в активной зоне или в специальных нишах отражателя, а поворотные барабаны – на периферии реактора. Перемещением стержней или поворотом барабанов изменяют количество делящихся ядер в единицу времени, регулируя уровень энерговыделения реактора, и, следовательно, его тепловую мощность.

Для снижения интенсивности нейтронного и гамма-излучения, опасного для всего живого, в силовом корпусе размещают элементы первичной реакторной защиты.

Другие разработки

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне 25 (рядом со знаменитой Зоной 51) на полигоне Невады учёные работали над одним амбициозным проектом — полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2000 °C. В январе 1965 года были произведены испытания ядерного ракетного двигателя под кодовым названием «КИВИ» (KIWI).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе[10].

В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю[11][12][13].

Принцип работы ядерного двигателя

Основывается либо на синтезе ядер, либо на использовании энергии деления ядерного топлива для формирования реактивной тяги. Различают установки импульсно-взрывного и жидкостного типов. Взрывная установка выбрасывает в космос миниатюрные атомные бомбы, которые детонируя на расстоянии нескольких метров, взрывной волной толкают корабль вперед. На практике такие устройства пока не используются.

Жидкостные ядерные двигатели, напротив, давно разработаны и испытаны. Еще в 60-х годах советские специалисты сконструировали работоспособную модель РД-0410. Подобные системы разрабатывались и в США. Их принцип основан на нагревании жидкости ядерным мини-реактором, она превращается в пар и формирует реактивную струю, которая и толкает космический аппарат. Хотя устройство называют жидкостным, в качестве рабочего тела, как правило, используют водород. Еще одно назначение ядерных космических установок – питание электрической бортовой сети (приборов) кораблей и спутников.

Повышение эффективности

Жидкофазный ядерный двигатель принципом работы и устройством аналогичен твердофазным, но жидкообразное состояние топлива позволяет увеличить температуру протекания реакции, а, следовательно, тягу силового агрегата. Так если для химических агрегатов (ЖТРД и РДТТ) максимальный удельный импульс (скорость истечения реактивной струи) – 5 420 м/с, для твердофазных ядерных и 10 000м/с – далеко не предел, то среднее значение этого показателя для газофазных ЯРД лежит в диапазоне 30 000 – 50 000 м/с.

Существуют проекты газофазного ядерного двигателя двух типов:

Открытого цикла, при котором ядерная реакция протекает внутри плазменного облака из рабочего тела, удерживаемого электромагнитным полем и поглощающего все образовавшееся тепло. Температура может достигать нескольких десятков тысяч градусов. В этом случае активную область окружает термостойкое вещество (например, кварц) – ядерная лампа, свободно пропускающая излучаемую энергию.В установках второго типа температура протекания реакции будет ограничена температурой плавления материала колбы. При этом энергетическая эффективность ядерного космического двигателя несколько снижается (удельный импульс до 15 000 м/с), но повышается экономичность и радиационная безопасность.

Российский ядерный двигатель

Ядерная электродвигательная установка

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

Подобная программа в США (проект NERVA) была свёрнута в 1971 году, но в 2020 году американцы вновь вернулись к данной теме, заказав разработку ядерного теплового двигателя (Nuclear Thermal Propulsion, NTP) компании Gryphon Technologies, для военных космических рейдеров на атомных двигателях для патрулирования окололунного и околоземного пространства[14], также с 2015 г. идут работы по проекту Kilopower.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем (космический буксир «Нуклон»). На 2021 г. ведется отработка макета; к 2025 году планируется создать опытные образцы данной ядерной энергоустановки; заявлена плановая дата лётных испытаний космического тягача с ЯЭДУ — 2030 год.

В 2021 г. Космическое агентство Великобритании заключило соглашение с компанией Rolls-Royce, в рамках которого планируется создать ядерный силовой двигатель для космических аппаратов дальнего действия.[15]

Тяжелые телекоммуникационные аппараты глобальной космической связи

На данный момент ведутся работы по ядерному двигателю для космоса, который планируется использовать в тяжелых аппаратах космической связи. РКК «Энергия» были выполнены исследования и проектные разработки системы глобальной космической связи экономически конкурентоспособной с дешевой сотовой связью, что предполагалось достичь переносом «телефонной станции» с Земли в космос.

Предпосылками к их созданию являются:

  • практически полное заполнение геостационарной орбиты (ГСО) работающими и пассивными спутниками;
  • исчерпание частотного ресурса;
  • положительный опыт создания и коммерческого использования информационных геостационарных спутников серии «Ямал».

При создании платформы «Ямал» новые технические решения составили 95%, что и позволило таким аппаратам стать конкурентоспособными на мировом рынке космических услуг.

Предполагается замена модулей с технологическим связным оборудованием примерно каждые семь лет. Это позволило бы создавать системы из 3-4 тяжелых многофункциональных спутников на ГСО с увеличением потребляемой ими электрической мощности. Первоначально были спроектированы КА на основе солнечных батарей мощностью 30-80 кВт. На следующем этапе в качестве источника электроэнергии планируется использовать ядерные двигатели на 400 кВт с ресурсом до одного года в транспортном режиме (для доставки базового модуля на ГСО) и 150-180 кВт в режиме длительного функционирования (не менее 10-15 лет).

ядерные двигатели для космических аппаратов

Проект “Орион” или импульсные ЯРД

Для полетов в космосе ядерный двигатель импульсного действия впервые предложил использовать в 1945 году американский математик польского происхождения Станислав Улам. В последующее десятилетие идею развили и доработали Т. Тейлор и Ф. Дайсон. Суть сводится к тому, что энергия небольших ядерных зарядов, подрываемых на некотором расстоянии от толкающей платформы на днище ракеты, сообщает ей большое ускорение.

В ходе стартовавшего в 1958 году проекта «Орион» именно таким двигателем планировалось оснастить ракету, способную доставить людей на поверхность Марса или орбиту Юпитера. Экипаж, размещенный в носовом отсеке, был бы защищен от разрушительных воздействий гигантских ускорений демпфирующим устройством. Результатом детальной инженерной проработки стали маршевые испытания масштабного макета корабля для изучения устойчивости полета (вместо ядерных зарядов использовалась обычная взрывчатка). Из-за дороговизны проект был закрыт в 1965 году.

Ядерные двигатели ракет

Схожие идеи создания «взрыволета» высказывал и советский академик А. Сахаров в июле 1961 года. Для вывода корабля на орбиту ученый предлагал использовать обычные ЖТРД.

Перспективы

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца[16][17] и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года[18].

См. также

  • Ракетный двигатель
  • РД-0410 — первый и единственный советский ядерный ракетный двигатель.
  • Атомолёт
  • Термоядерный ракетный двигатель
  • Ядерный ракетный двигатель на гомогенном растворе солей ядерного топлива
  • NERVA
  • Supersonic Low-Altitude Missile

Примечания

  1. 1 2 Паневин, Прищепа, 1978.
  2. Центр Келдыша, 2003, с. 192.
  3. Энергомаш, 2008, Очерк разработки ядерных ракетных двигателей в КБ Энергомаш.
  4. Роскосмос занялся разработкой ядерного космического корабля, Lenta.ru, 28.10.2009.
  5. Центр Келдыша, 2003, с. 195.
  6. http://www.astronautix.com/lvs/oritsink.htm Orion Starship — Heat Sink, Encyclopedia Astronautica www.astronautix.com
  7. http://www.astronautix.com/lvs/oriative.htm Orion Starship — Ablative, Encyclopedia Astronautica www.astronautix.com
  8. Looking Back at Orion by Paul Gilster on September 23, 2006, Centauri Dreams (centauri-dreams.org)
  9. Российские ядерные двигатели могут быть использованы при полёте на Марс
  10. Andrew Jones //China sets out long-term space transportation roadmap including a nuclear space shuttle. gbtimes.com. 2017-11-16.
  11. NASA Is Bringing Back Nuclear-Powered Rockets to Get to Mars//Fortune, новостной портал, по информации Bloomberg. 15 февраля 2018.
  12. Даниил Ревадзе//NASA возвращается к идее ядерного двигателя для космических кораблей. Портал hightech.fm. 17 февраля 2018.
  13. Loura Hall. «Nuclear Thermal Propulsion: Game Changing Technology for Deep Space Exploration». nasa.gov. 2018-05-25.
  14. Космические силы США заказали разработку ядерного двигателя для лунных рейдеров // 3DNews, 1.10.2020
  15. Великобритания хочет создать дальний космический флот на атомных двигателях Rolls-Royce // 3DNews, 16.01.2021
  16. Багров А. В., Смирнов М. А., Смирнов С. А. Межзвездные корабли с магнитным зеркалом // Труды Двадцатых чтений К. Э. Циолковского. — Калуга, 1985.
  17. Багров А. В., Смирнов М. А. Каравеллы для звездоплавателей // Наука и человечество. 1992—1994. — М.: Знание, 1994.
  18. Багров А. В., Смирнов М. А. XXI век: строим звездолет // Международный ежегодник «Гипотезы, прогнозы, наука и фантастика». — 1991.

Достоинства и недостатки ЯРД

К бесспорным преимуществам использования ядерных двигателей в качестве силовых агрегатов для космических летательных аппаратов следует отнести их высокую энергетическую эффективность, обеспечивающую высокий удельный импульс и хорошие тяговые показатели (до тысячи тонн в безвоздушном пространстве), внушительный энергозапас при автономной работе. Современный уровень научно-технического развития позволяет обеспечить сравнительную компактность такой установки.

Основной недостаток ЯРД, послуживший причиной сворачивания проектно-исследовательских работ – высокая радиационная опасность. Это особенно актуально при проведении наземных огневых тестов в результате которых возможно попадание в атмосферу вместе с рабочим телом и радиоактивных газов, соединений урана и его изотопов, и разрушающее воздействие проникающей радиации. По этим же причинам неприемлем старт космического корабля, оборудованного ядерным двигателем, непосредственно с поверхности Земли.

Многоразовый буксир (МБ)

Одним из важнейших способов повышения эффективности транспортных операций в космосе является многоразовое использование элементов транспортной системы. Ядерный двигатель для космических кораблей мощностью не менее 500 кВт позволяет создать многоразовый буксир и тем самым значительно повысить эффективность многозвенной космической транспортной системы. Особенно полезна такая система в программе обеспечения больших годовых грузопотоков. Примером может стать программа освоения Луны с созданием и обслуживанием постоянно наращиваемой обитаемой базы и экспериментальных технологических и производственных комплексов.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...